
3D-Cell-Annotator technical details

1 Introduction

In this supplementary, we introduce the theoretical foundations for the meth-
ods used in the software. 3D-Cell-Annotator is based on an extended version
of active contours called selective active contour model [1]. The selective active
contour model introduces two different priors, the volume and the shape prior;
these priors are proposed in 3D-Cell-Annotator to extract single cells from clus-
ters. Two different data terms are tested, the first one is the simplest anisotropic
edge detector while the other one, called the local region data term, considers
the environment of the contour to find the boundary of the object more effec-
tively. The implementation uses the level set framework that naturally handles
the topological deformations of the contour. Since one of the most fundamental
limitations of the level set method is its numerical instability, we proposed a
new method called balanced phase field model, that regularizes the level set in
a narrow band in every iteration step to achieve numerical stability during the
segmentation [2]. We briefly discuss both models here since these are the main
building blocks of the algorithm used by the proposed software.

2 Selective active contours in 3D

The 2D selective active contour model was introduced to segment objects by
considering their size and shape [1, 3]. We chose the level set framework because
it is a powerful method for implementing interfacial problems like active contours
[4].

2.1 Notations

Surfaces are denoted by S ⊆ R3 or S(u, v) ∈ R3 in parameterized form, where u
and v are surface parameters. Su(u, v),Sv(u, v) ∈ R3 are partial derivatives wrt.
surface parameters (u,v), providing local (covariant) basis for the vectors of the
tangent plane at S(u, v). Recall that Su×Sv is normal to the surface. Assuming
Su,Svn constitute a right handed basis, the inward pointing unit normal Su×Sv

|Su×Sv|
is denoted by n. The sum curvature of the surface is denoted by K, while KG

is the Gaussian curvature. The integral
∫
dS =

∫ √
|Su|2|Sv|2 − (Su · Sv)2dudv

gives the surface area and
∫
dV = − 1

6

∫
S · (Su × Sv)dudv gives the volume of

a surface S, where dS and dV are the surface and volume element respectively.
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Level set functions are denoted by φ = φ(t,x), where t ∈ R and x =
(x1, x2, x3) ∈ R3 are the time and space variables, respectively. According to
this, φt denotes the partial derivative with respect to the time and ∇φ denotes
the spatial gradient ∇φ = (φx1

, φx2
, φx3

). The Hessian matrix of φ is denoted
by H(φ) = (φxixj

)1≤i,j≤3.

2.2 The selective functional

There are four terms included in the functional of the selective active contour
model. Below we provide a concise summary. For the details, see the original
paper [1].

2.2.1 Volume prior

The volume prior prefers objects having a certain size and it is denoted by V0.

V(S) =
1

kV k0

(∫
dV − V0

)k
(1)

The k is an arbitrary integer. If it is 2 then the contour tries to have a
volume of exactly V0 while if it is 3, it has an inflection at V0 therefore it prefers
a volume of 0 except at V0 where the term has no effect.

2.2.2 Shape prior

The shape prior penalizes the deviation of the current surface from the preferred
shape p (plasma or amoeba value). The currently implemented shape prior is
called sphericity in 3D-Cell-Annotator but essentially it is the surface/volume

ratio of the surface that is calculated as p = area
3
2

volume . The plasma value is

minimal for the sphere, that is p = 3
√

4π ≈ 10.6. We normalize the prior to
assign 1.0 to the sphere so the sphericity is given by p− 9.6.

The shape prior that considers the surface volume ratio is then:

S(S) =
1

2V 2
0

[(∫
dS

) 3
2

− p
∫
dV

]2

(2)

2.2.3 Smoothness term

A curvature based smoothness term is applied to prevent the instability of the
surface called Euler elastica. For the details, consult the original paper [1].

E(S) =
1

2

∫
K2dS, (3)

where the K is the sum curvature of the surface at a given point.
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2.2.4 Data term

Two different data terms are tested, but there is a wide range of possible ones
to choose from. The first one is the simple edge detector:

DE(S) =

∫
∇I · ndS, (4)

where the I is the image.
The second one is a region based data term. It considers the mean intensities

in the rectangular prisms positioned both in the inner and the outer side of the
surface. In our setting the functional maximizes the intensity difference between
the inner and outer part. If this data term is used, then the algorithm has three
more parameters that define the size of the region (width, height and depth).

Φ(S,n) =
1

4pqr

(∫
<+

I(p)dV −
∫
<−

I(p)dV

)
, (5)

where dV = dξdζdη, ξ ∈ [−p, p], ζ ∈ [−q, q] and η ∈ [0, r]. p is in the local
coordinate system, therefore p = S + ξe1 + ζe2 + ηn as it is visualised in fig.
(1).

Therefore, we can use the local region as a data term in the selective model:

DR(S) =

∫
Φ(S,n)dS. (6)

Figure 1: Visualisation of the local region in 3D. The local Cartesian coordinate
system of the region is centered at the surface point S while the orientation is
determined by the unit normal vector of the surface n and the unit basis vectors
e1, e2 of the tangential plane of the surface.

2.2.5 Putting it all together: the composite functional

The composite functional therefore consists of the previously introduced terms
and becomes the following:
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L = αD + βS + γV + δE , (7)

where each term has an arbitrary real weight that can be controlled from the
interface of the 3D-Cell-Annotator. The D can be either DE or DR depending
on which data term is used.

2.3 The Euler-Lagrange equation for the functional

The extremal surface of the functional above can be found by solving the cor-
responding Euler-Lagrange equations. In our case (3D surfaces in the level set
framework) they have the form:

|Su × Sv|Qn = 0, (8)

where Q is a scalar field with the functional derivatives: Q = αQDE + βQS +
γQV + δQE .

That is, for the volume prior, we have QV = − 1
V 3
0

(
∫
dV − V0)2 (V0 is the

target volume), for the shape prior (that takes sphericity into consideration)

QS =

[( ∫
dS

) 3
2

− p
∫
dV

][
p− 3

2K

(∫
dS

) 1
2
]
, p is the (unnormalized) target

plasma value (p = surface
3
2

volume ), for the data term, we have QDE = ∆I and for
the smoothness term we have QE = 1

2K
3 − 2KGK +∇ · ∇K, where KG is the

Gaussian curvature. The Euler-Lagrange of DR is slightly more complicated
[3].

3 Level set regularization: the Balanced Phase
Field model

3.1 Notations

In the level set framework, the representation of contours is given by a level set
function of two variables φ (x, y). The quantities of the segmentation problem
are extracted from this function, such as the unit normal vector n = ∇φ

|∇φ| or the

curvature K = −∇·
(
∇φ
|∇φ|

)
where ∇ is the gradient operator and “·” stands for

the scalar (dot) product, i.e. ∇ · v is the divergence of the vector field v.

3.2 From the phase field model to the balanced model

Since one of the fundamental problems of the level set method is its numerical
instability, one should take care about the numerical errors by using some reg-
ularization method explicitly by not letting the active contour model to deform
the level set from the signed distance function too much. We experienced severe
issues with our selective model when we computed the curve evolution in level
set framework, and the tested approximate solutions did not solve the issue,
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while the more accurate methods made the algorithm too slow to be practical
in reality. A simple observation is that maintaining the whole level set during
the evolution is not necessary, since we always consider the derivatives in the
neighborhood of the interface. Therefore it is enough to maintain the stability
in this neighborhood called narrow band. Therefore we chose to apply a mod-
ified phase field solution to regularize the level set in every iteration. Using
such a model, we treat the level set as a phase field, where the inner part of
the contour is encoded with value 1 while the outer is with −1. Between the
two, there is a phase transition with a necessary zero-crossing that models the
contour. The goal is to maintain a smooth phase transition that is similar to the
signed distance property of the level set near the contour. Furthermore, using
the modified phase field model called balanced phase field, the authors do not
only propose a solution to the numerical issues of the level sets but also eliminate
the effect of the regularization method on the active model. In the following, we
discuss the most important aspects of the model for the two dimensional case
starting from the original phase field model and introducing the ideas behind
the improved balanced phase field. For the details, and the intermediate steps
of the derivation, consult [2].

In the original functional we had:∫ ∫
Ω

D0

2
|∇φ|2 + λ0

(
φ4

4
− φ2

2

)
dA. (9)

The solution of (9) is a scalar field φ with values ±1 and a phase transition
between the two values representing the narrow band of the contour. It is
possible to embed the functional (9) to the active contour model directly by
extending its functional with it, however it may lead to an extremely complex
system considering its analysis. Instead of applying the phase field directly,
one can use it in a shape maintenance role: before the next evolution step,
the Euler-Lagrange equation associated with (9) can be solved independently,
providing a regularized narrow band to the next iteration step.

However, a careful analysis shows that applying this functional to the level
sets has a serious side effect on the active model by producing a curvature driven
motion. In order to fix this issue, a Laplacian smoothness term is introduced
and the original functional becomes the following:∫ ∫

Ω

D

2
(∆φ)2 + λ

(
φ4

4
− φ2

2
+

1

4

)
dA. (10)

However the proposed functional (10) still has a curvature dependent term
and therefore produces the same effect when applied. It was shown that by
using the combination of the smoothness terms from the previous functionals
in a new one, with appropriate choice of the relative weights, the curvature de-
pendency can be almost fully eliminated [2]. The new functional then becomes
the following: ∫ ∫

Ω

D

2
|∆φ|2 − D0

2
|∇φ|2 + λ

(
φ4

4
− φ2

2
+

1

4

)
dA. (11)
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The conditions needed to be satisfied in order to cancel the effect of the
curvature in the functional (11) depend on the width of the phase transition
(w):

λw4 − 24D0w
2 − 720D = 0, (12)

and

−D0
3

w
+D

48

w3
= 0. (13)

In order to satisfy the conditions (12) and (13), one should compute the
parameters of (11) as a function of the desired width of the phase transition.
Therefore we first should determine the width of the phase transition needed.
This depends on the highest order of derivatives (n) used in the active model
since we have to consider at least n+ 1 points around the contour if we use the
central difference schemes. The phase transition is non-linear, but the deviation
from the linearity of its innermost part is negligible. This near-linear part is
confined to the immediate neighbors of zero level set with the extent about half
the size of the width parameter. Therefore, assuming the n-neighbors are used
to calculate the differential quantities of the contour (using finite differences
scheme) we use width parameter 2n+1 to obtain accurate values. Then, solving
the conditions above, for the remaining parameters we get:

D0 = 1, D =
w2

16
, λ =

21

w2
. (14)

The associated Euler-Lagrange functional with the parameters only depend-
ing on the width of the phase transition is:

w2

16
∆∆φ+ ∆φ+

21

w2

(
φ3 − φ

)
= 0. (15)

The (15) can be implemented as simply as applying a (4-th order linear)
filter modified by a point-wise value of the nonlinear (cubic) term for the grid
points of the phase field lattice.

4 Implementation details

We briefly discuss the implementation of the selective algorithm and the 3D-
Cell-Annotator software.

4.1 The selective model with the balanced phase field reini-
tialization model

We solve the Euler-Lagrange equations in the level set framework, therefore the
following quantities can be substituted:
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Su × Sv 7→ ∇φ, n 7→ ∇φ
|∇φ|

, (16)

while the curvatures are computed as:

K 7→ −∇ · ∇φ
|∇φ|

, KG 7→ |∇φ|−4

∣∣∣∣H(φ) ∇φT
∇φ 0

∣∣∣∣ . (17)

For minimizing the functionals a simple gradient descent is used. The finite
differences are used to compute the derivatives numerically.

4.2 The software

The selective model is targeted to the CUDA architecture in C++. The level set
values are only computed where the surface is located in the current iteration.
The algorithm is distributed as a shared library and a new tool is created in the
MITK that implements the communication between the shared library and the
MITK.
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